diff --git a/models/roma_unsb_model.py b/models/roma_unsb_model.py index 1d8a85d..81421b8 100644 --- a/models/roma_unsb_model.py +++ b/models/roma_unsb_model.py @@ -305,19 +305,6 @@ class RomaUnsbModel(BaseModel): initialized at the first feedforward pass with some input images. Please also see PatchSampleF.create_mlp(), which is called at the first forward() call. """ - #bs_per_gpu = data["A"].size(0) // max(len(self.opt.gpu_ids), 1) - #self.set_input(data) - #self.real_A = self.real_A[:bs_per_gpu] - #self.real_B = self.real_B[:bs_per_gpu] - #self.forward() # compute fake images: G(A) - #if self.opt.isTrain: - # - # self.compute_G_loss().backward() - # self.compute_D_loss().backward() - # self.compute_E_loss().backward() - # if self.opt.lambda_NCE > 0.0: - # self.optimizer_F = torch.optim.Adam(self.netF.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, self.opt.beta2)) - # self.optimizers.append(self.optimizer_F) pass def optimize_parameters(self): diff --git a/scripts/train.sh b/scripts/train.sh index fb83ff3..bc7c6c3 100755 --- a/scripts/train.sh +++ b/scripts/train.sh @@ -7,27 +7,29 @@ python train.py \ --dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \ - --name UNIV_1 \ + --name UNIV_5 \ --dataset_mode unaligned_double \ - --no_flip \ --display_env UNIV \ --model roma_unsb \ - --lambda_GAN 2.0 \ --lambda_SB 1.0 \ - --lambda_ctn 1.0 \ + --lambda_ctn 10 \ --lambda_inc 1.0 \ - --lr 0.00001 \ - --gpu_id 0 \ - --lambda_D_ViT 1 \ + --lambda_global 6.0 \ + --gamma_stride 20 \ + --lr 0.000002 \ + --gpu_id 1 \ --nce_idt False \ --netF mlp_sample \ - --flip_equivariance True \ --eta_ratio 0.4 \ --tau 0.01 \ - --num_timesteps 4 \ + --num_timesteps 5 \ --input_nc 3 \ --n_epochs 400 \ --n_epochs_decay 200 \ -# exp1 num_timesteps=4 -# exp2 num_timesteps=5 \ No newline at end of file +# exp1 num_timesteps=4 (已停) +# exp2 num_timesteps=5 (已停) +# exp3 --num_timesteps 5,--lambda_inc 8 ,--gamma_stride 20,--lambda_global 6.0,--lambda_ctn 10, --lr 0.000002 (已停) +# exp4 --num_timesteps 5,--lambda_inc 8 ,--gamma_stride 20,--lambda_global 6.0,--lambda_ctn 10, --lr 0.000002, ET_XY=self.netE(XtXt_1, self.time, XtXt_1).mean() - torch.logsumexp(self.netE(XtXt_1, self.time_idx, XtXt_2).reshape(-1), dim=0) ,并把GAN,CTN loss考虑到了A1和B1 (已停) +# exp5 基于 exp4 ,修改了 self.loss_global = self.calculate_similarity(self.mutil_real_A0_tokens, self.mutil_fake_B0_tokens) + self.calculate_similarity(mutil_real_A1_tokens, self.mutil_fake_B1_tokens) ,gpu_id 1 (已停) +# 上面几个实验效果都不好,实验结果都已经删除了,开的新的train_sbiv 对代码进行了调整,效果变得更好了。 \ No newline at end of file diff --git a/scripts/train_sbiv.sh b/scripts/train_sbiv.sh new file mode 100755 index 0000000..8aa431a --- /dev/null +++ b/scripts/train_sbiv.sh @@ -0,0 +1,33 @@ +#!/bin/sh +# Train for video mode +#CUDA_VISIBLE_DEVICES=0 python train.py --dataroot /path --name ROMA_name --dataset_mode unaligned_double --no_flip --local_nums 64 --display_env ROMA_env --model roma --side_length 7 --lambda_spatial 5.0 --lambda_global 5.0 --lambda_motion 1.0 --atten_layers 1,3,5 --lr 0.00001 + +# Train for image mode +#CUDA_VISIBLE_DEVICES=0 python train.py --dataroot /path --name ROMA_name --dataset_mode unaligned --local_nums 64 --display_env ROMA_env --model roma --side_length 7 --lambda_spatial 5.0 --lambda_global 5.0 --atten_layers 1,3,5 --lr 0.00001 + +python train.py \ + --dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \ + --name SBIV_4 \ + --dataset_mode unaligned_double \ + --display_env SBIV \ + --model roma_unsb \ + --lambda_SB 1.0 \ + --lambda_ctn 10 \ + --lambda_inc 1.0 \ + --lambda_global 6.0 \ + --gamma_stride 20 \ + --lr 0.000002 \ + --gpu_id 2 \ + --nce_idt False \ + --netF mlp_sample \ + --eta_ratio 0.4 \ + --tau 0.01 \ + --num_timesteps 3 \ + --input_nc 3 \ + --n_epochs 400 \ + --n_epochs_decay 200 \ + +# exp6 num_timesteps=4 ,gpu_id 0(基于 exp5 ,exp1 已停) (已停) +# exp7 num_timesteps=3 ,gpu_id 0 基于 exp6 (将停) +# # exp8 num_timesteps=4 ,gpu_id 1 ,修改了训练判别器的loss,以及ctnloss(基于,exp6) +# # exp9 num_timesteps=3 ,gpu_id 2 ,(基于 exp8) \ No newline at end of file