Compare commits
5 Commits
main
...
withoutCNT
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e8e483fbf8 | ||
|
|
3c4d53377c | ||
|
|
6a2761be99 | ||
|
|
c2e6cfe0b1 | ||
|
|
4af0d7463d |
5
.gitignore
vendored
Normal file
5
.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
checkpoints/
|
||||||
|
*.log
|
||||||
|
*.pth
|
||||||
|
*.ckpt
|
||||||
|
__pycache__/
|
||||||
@ -1,70 +0,0 @@
|
|||||||
================ Training Loss (Sun Feb 23 15:46:44 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 15:52:29 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:00:07 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:02:40 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:05:19 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:06:44 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:09:38 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:44:56 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:49:46 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:51:03 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 16:51:23 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:04:02 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:04:39 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:05:17 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:06:40 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:11:48 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:13:31 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:14:11 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:14:29 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:16:27 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:16:44 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:20:39 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:21:44 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:35:27 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:39:21 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:40:15 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:41:15 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:47:46 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:48:36 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:50:20 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:51:50 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:58:45 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 18:59:52 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 19:03:05 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 19:03:57 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 21:11:47 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 21:17:10 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 21:20:14 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 21:29:03 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 21:34:57 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 21:35:26 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:28:43 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:29:04 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:29:52 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:30:40 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:33:48 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:39:16 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:39:48 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:41:34 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:42:01 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:44:17 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:45:53 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:46:48 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:47:42 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:49:44 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:50:29 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:51:47 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:55:56 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:56:19 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:57:58 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 22:59:09 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:02:36 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:03:56 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:09:21 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:10:05 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:11:43 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:12:41 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:13:05 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:13:59 2025) ================
|
|
||||||
================ Training Loss (Sun Feb 23 23:14:59 2025) ================
|
|
||||||
@ -1,87 +0,0 @@
|
|||||||
----------------- Options ---------------
|
|
||||||
atten_layers: 5
|
|
||||||
batch_size: 1
|
|
||||||
beta1: 0.5
|
|
||||||
beta2: 0.999
|
|
||||||
checkpoints_dir: ./checkpoints
|
|
||||||
continue_train: False
|
|
||||||
crop_size: 256
|
|
||||||
dataroot: /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor [default: placeholder]
|
|
||||||
dataset_mode: unaligned_double [default: unaligned]
|
|
||||||
direction: AtoB
|
|
||||||
display_env: ROMA [default: main]
|
|
||||||
display_freq: 50
|
|
||||||
display_id: None
|
|
||||||
display_ncols: 4
|
|
||||||
display_port: 8097
|
|
||||||
display_server: http://localhost
|
|
||||||
display_winsize: 256
|
|
||||||
easy_label: experiment_name
|
|
||||||
epoch: latest
|
|
||||||
epoch_count: 1
|
|
||||||
eta_ratio: 0.1
|
|
||||||
evaluation_freq: 5000
|
|
||||||
flip_equivariance: False
|
|
||||||
gan_mode: lsgan
|
|
||||||
gpu_ids: 0
|
|
||||||
init_gain: 0.02
|
|
||||||
init_type: xavier
|
|
||||||
input_nc: 3
|
|
||||||
isTrain: True [default: None]
|
|
||||||
lambda_D_ViT: 1.0
|
|
||||||
lambda_GAN: 8.0 [default: 1.0]
|
|
||||||
lambda_NCE: 8.0 [default: 1.0]
|
|
||||||
lambda_SB: 0.1
|
|
||||||
lambda_ctn: 1.0
|
|
||||||
lambda_global: 1.0
|
|
||||||
lambda_inc: 1.0
|
|
||||||
lmda_1: 0.1
|
|
||||||
load_size: 286
|
|
||||||
lr: 1e-05 [default: 0.0002]
|
|
||||||
lr_decay_iters: 50
|
|
||||||
lr_policy: linear
|
|
||||||
max_dataset_size: inf
|
|
||||||
model: roma_unsb [default: cut]
|
|
||||||
n_epochs: 100
|
|
||||||
n_epochs_decay: 100
|
|
||||||
n_layers_D: 3
|
|
||||||
n_mlp: 3
|
|
||||||
name: ROMA_UNSB_001 [default: experiment_name]
|
|
||||||
nce_T: 0.07
|
|
||||||
nce_idt: False [default: True]
|
|
||||||
nce_includes_all_negatives_from_minibatch: False
|
|
||||||
nce_layers: 0,4,8,12,16
|
|
||||||
ndf: 64
|
|
||||||
netD: basic_cond
|
|
||||||
netF: mlp_sample
|
|
||||||
netF_nc: 256
|
|
||||||
netG: resnet_9blocks_cond
|
|
||||||
ngf: 64
|
|
||||||
no_antialias: False
|
|
||||||
no_antialias_up: False
|
|
||||||
no_dropout: True
|
|
||||||
no_flip: True [default: False]
|
|
||||||
no_html: False
|
|
||||||
normD: instance
|
|
||||||
normG: instance
|
|
||||||
num_patches: 256
|
|
||||||
num_threads: 4
|
|
||||||
num_timesteps: 10 [default: 5]
|
|
||||||
output_nc: 3
|
|
||||||
phase: train
|
|
||||||
pool_size: 0
|
|
||||||
preprocess: resize_and_crop
|
|
||||||
pretrained_name: None
|
|
||||||
print_freq: 100
|
|
||||||
random_scale_max: 3.0
|
|
||||||
save_by_iter: False
|
|
||||||
save_epoch_freq: 5
|
|
||||||
save_latest_freq: 5000
|
|
||||||
serial_batches: False
|
|
||||||
stylegan2_G_num_downsampling: 1
|
|
||||||
suffix:
|
|
||||||
tau: 0.01
|
|
||||||
update_html_freq: 1000
|
|
||||||
use_idt: False
|
|
||||||
verbose: False
|
|
||||||
----------------- End -------------------
|
|
||||||
Binary file not shown.
@ -65,6 +65,10 @@ class ContentAwareOptimization(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.lambda_inc = lambda_inc # 权重增强系数
|
self.lambda_inc = lambda_inc # 权重增强系数
|
||||||
self.eta_ratio = eta_ratio # 选择内容区域的比例
|
self.eta_ratio = eta_ratio # 选择内容区域的比例
|
||||||
|
|
||||||
|
# 改为类成员变量,确保钩子函数可访问
|
||||||
|
self.gradients_real = []
|
||||||
|
self.gradients_fake = []
|
||||||
|
|
||||||
def compute_cosine_similarity(self, gradients):
|
def compute_cosine_similarity(self, gradients):
|
||||||
"""
|
"""
|
||||||
@ -79,78 +83,65 @@ class ContentAwareOptimization(nn.Module):
|
|||||||
cosine_sim = F.cosine_similarity(gradients, mean_grad, dim=2) # [B, N]
|
cosine_sim = F.cosine_similarity(gradients, mean_grad, dim=2) # [B, N]
|
||||||
return cosine_sim
|
return cosine_sim
|
||||||
|
|
||||||
def generate_weight_map(self, gradients_fake):
|
def generate_weight_map(self, gradients_real, gradients_fake):
|
||||||
"""
|
"""
|
||||||
生成内容感知权重图
|
生成内容感知权重图
|
||||||
Args:
|
Args:
|
||||||
gradients_fake: [B, N, D] 生成图像判别器梯度 [2,3,256,256]
|
gradients_real: [B, N, D] 真实图像判别器梯度
|
||||||
|
gradients_fake: [B, N, D] 生成图像判别器梯度
|
||||||
Returns:
|
Returns:
|
||||||
weight_fake: [B, N] 生成图像权重图 [2,3,256]
|
weight_real: [B, N] 真实图像权重图
|
||||||
|
weight_fake: [B, N] 生成图像权重图
|
||||||
"""
|
"""
|
||||||
|
# 计算真实图像块的余弦相似度
|
||||||
|
cosine_real = self.compute_cosine_similarity(gradients_real) # [B, N] 公式5
|
||||||
# 计算生成图像块的余弦相似度
|
# 计算生成图像块的余弦相似度
|
||||||
cosine_fake = self.compute_cosine_similarity(gradients_fake) # [B, N]
|
cosine_fake = self.compute_cosine_similarity(gradients_fake) # [B, N]
|
||||||
|
|
||||||
# 选择内容丰富的区域(余弦相似度最低的eta_ratio比例)
|
# 选择内容丰富的区域(余弦相似度最低的eta_ratio比例)
|
||||||
k = int(self.eta_ratio * cosine_fake.shape[1])
|
k = int(self.eta_ratio * cosine_real.shape[1])
|
||||||
|
|
||||||
# 对生成图像生成权重图(同理)
|
# 对真实图像生成权重图
|
||||||
|
_, real_indices = torch.topk(-cosine_real, k, dim=1) # 选择最不相似的区域
|
||||||
|
weight_real = torch.ones_like(cosine_real)
|
||||||
|
for b in range(cosine_real.shape[0]):
|
||||||
|
weight_real[b, real_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_real[b, real_indices[b]])) #公式6
|
||||||
|
|
||||||
|
# 对生成图像生成权重图(同理)
|
||||||
_, fake_indices = torch.topk(-cosine_fake, k, dim=1)
|
_, fake_indices = torch.topk(-cosine_fake, k, dim=1)
|
||||||
weight_fake = torch.ones_like(cosine_fake)
|
weight_fake = torch.ones_like(cosine_fake)
|
||||||
for b in range(cosine_fake.shape[0]):
|
for b in range(cosine_fake.shape[0]):
|
||||||
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake[b, fake_indices[b]]))
|
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake[b, fake_indices[b]]))
|
||||||
|
|
||||||
return weight_fake
|
return weight_real, weight_fake
|
||||||
|
|
||||||
def forward(self, D_real, D_fake, real_scores, fake_scores):
|
def forward(self, D_real, D_fake, real_scores, fake_scores):
|
||||||
"""
|
# 清空梯度缓存
|
||||||
计算内容感知对抗损失
|
self.gradients_real.clear()
|
||||||
Args:
|
self.gradients_fake.clear()
|
||||||
D_real: 判别器对真实图像的特征输出 [B, C, H, W]
|
|
||||||
D_fake: 判别器对生成图像的特征输出 [B, C, H, W]
|
|
||||||
real_scores: 真实图像的判别器预测 [B, N] (N=H*W)
|
|
||||||
fake_scores: 生成图像的判别器预测 [B, N]
|
|
||||||
Returns:
|
|
||||||
loss_co_adv: 内容感知对抗损失
|
|
||||||
"""
|
|
||||||
B, C, H, W = D_real.shape
|
|
||||||
N = H * W
|
|
||||||
|
|
||||||
# 注册钩子获取梯度
|
# 注册钩子
|
||||||
gradients_real = []
|
hook_real = lambda grad: self.gradients_real.append(grad.detach())
|
||||||
gradients_fake = []
|
hook_fake = lambda grad: self.gradients_fake.append(grad.detach())
|
||||||
|
|
||||||
def hook_real(grad):
|
|
||||||
gradients_real.append(grad.detach().view(B, N, -1))
|
|
||||||
|
|
||||||
def hook_fake(grad):
|
|
||||||
gradients_fake.append(grad.detach().view(B, N, -1))
|
|
||||||
|
|
||||||
D_real.register_hook(hook_real)
|
D_real.register_hook(hook_real)
|
||||||
D_fake.register_hook(hook_fake)
|
D_fake.register_hook(hook_fake)
|
||||||
|
|
||||||
# 计算原始对抗损失以触发梯度计算
|
# 触发梯度计算
|
||||||
loss_real = torch.mean(torch.log(real_scores + 1e-8))
|
(real_scores.mean() + fake_scores.mean()).backward(retain_graph=True)
|
||||||
loss_fake = torch.mean(torch.log(1 - fake_scores + 1e-8))
|
|
||||||
# 添加与 D_real、D_fake 相关的 dummy 项,确保梯度传递
|
|
||||||
loss_dummy = 1e-8 * (D_real.sum() + D_fake.sum())
|
|
||||||
total_loss = loss_real + loss_fake + loss_dummy
|
|
||||||
total_loss.backward(retain_graph=True)
|
|
||||||
|
|
||||||
# 获取梯度数据
|
# 获取梯度并调整维度
|
||||||
gradients_real = gradients_real[0] # [B, N, D]
|
grad_real = self.gradients_real[0] # [B, N, D]
|
||||||
gradients_fake = gradients_fake[0] # [B, N, D]
|
grad_fake = self.gradients_fake[0]
|
||||||
|
|
||||||
# 生成权重图
|
# 生成权重图
|
||||||
self.weight_real, self.weight_fake = self.generate_weight_map(gradients_real, gradients_fake)
|
weight_real, weight_fake = self.generate_weight_map(grad_real, grad_fake)
|
||||||
|
|
||||||
# 应用权重到对抗损失
|
# 计算加权损失
|
||||||
loss_co_real = torch.mean(self.weight_real * torch.log(real_scores + 1e-8))
|
loss_co_real = (weight_real * torch.log(real_scores + 1e-8)).mean()
|
||||||
loss_co_fake = torch.mean(self.weight_fake * torch.log(1 - fake_scores + 1e-8))
|
loss_co_fake = (weight_fake * torch.log(1 - fake_scores + 1e-8)).mean()
|
||||||
|
|
||||||
# 计算并返回最终内容感知对抗损失
|
return -(loss_co_real + loss_co_fake), weight_real, weight_fake
|
||||||
loss_co_adv = -(loss_co_real + loss_co_fake)
|
|
||||||
|
|
||||||
return loss_co_adv
|
|
||||||
|
|
||||||
class ContentAwareTemporalNorm(nn.Module):
|
class ContentAwareTemporalNorm(nn.Module):
|
||||||
def __init__(self, gamma_stride=0.1, kernel_size=21, sigma=5.0):
|
def __init__(self, gamma_stride=0.1, kernel_size=21, sigma=5.0):
|
||||||
@ -158,6 +149,33 @@ class ContentAwareTemporalNorm(nn.Module):
|
|||||||
self.gamma_stride = gamma_stride # 控制整体运动幅度
|
self.gamma_stride = gamma_stride # 控制整体运动幅度
|
||||||
self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层
|
self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层
|
||||||
|
|
||||||
|
def upsample_weight_map(self, weight_patch, target_size=(256, 256)):
|
||||||
|
"""
|
||||||
|
将patch级别的权重图上采样到目标分辨率
|
||||||
|
Args:
|
||||||
|
weight_patch: [B, 1, 24, 24] 来自ViT的patch权重图
|
||||||
|
target_size: 目标分辨率 (H, W)
|
||||||
|
Returns:
|
||||||
|
weight_full: [B, 1, 256, 256] 上采样后的全分辨率权重图
|
||||||
|
"""
|
||||||
|
# 使用双线性插值上采样
|
||||||
|
B = weight_patch.shape[0]
|
||||||
|
weight_patch = weight_patch.view(B, 1, 24, 24)
|
||||||
|
|
||||||
|
weight_full = F.interpolate(
|
||||||
|
weight_patch,
|
||||||
|
size=target_size,
|
||||||
|
mode='bilinear',
|
||||||
|
align_corners=False
|
||||||
|
)
|
||||||
|
|
||||||
|
# 对每个16x16的patch内部保持权重一致(可选)
|
||||||
|
# 通过平均池化再扩展,消除插值引入的渐变
|
||||||
|
weight_full = F.avg_pool2d(weight_full, kernel_size=16, stride=16)
|
||||||
|
weight_full = F.interpolate(weight_full, scale_factor=16, mode='nearest')
|
||||||
|
|
||||||
|
return weight_full
|
||||||
|
|
||||||
def forward(self, weight_map):
|
def forward(self, weight_map):
|
||||||
"""
|
"""
|
||||||
生成内容感知光流
|
生成内容感知光流
|
||||||
@ -166,15 +184,16 @@ class ContentAwareTemporalNorm(nn.Module):
|
|||||||
Returns:
|
Returns:
|
||||||
F_content: [B, 2, H, W] 生成的光流场(x/y方向位移)
|
F_content: [B, 2, H, W] 生成的光流场(x/y方向位移)
|
||||||
"""
|
"""
|
||||||
print(weight_map.shape)
|
# 上采样权重图到全分辨率
|
||||||
B, _, H, W = weight_map.shape
|
weight_full = self.upsample_weight_map(weight_map) # [B,1,384,384]
|
||||||
|
|
||||||
# 1. 归一化权重图
|
# 1. 归一化权重图
|
||||||
# 保持区域相对强度,同时限制数值范围
|
# 保持区域相对强度,同时限制数值范围
|
||||||
weight_norm = F.normalize(weight_map, p=1, dim=(2,3)) # L1归一化 [B,1,H,W]
|
weight_norm = F.normalize(weight_full, p=1, dim=(2,3)) # L1归一化 [B,1,H,W]
|
||||||
|
|
||||||
# 2. 生成高斯噪声(与光流场同尺寸)
|
# 2. 生成高斯噪声
|
||||||
z = torch.randn(B, 2, H, W, device=weight_map.device) # [B,2,H,W]
|
B, _, H, W = weight_norm.shape
|
||||||
|
z = torch.randn(B, 2, H, W, device=weight_norm.device) # [B,2,H,W]
|
||||||
|
|
||||||
# 3. 合成基础光流
|
# 3. 合成基础光流
|
||||||
# 将权重图扩展为2通道(x/y方向共享权重)
|
# 将权重图扩展为2通道(x/y方向共享权重)
|
||||||
@ -204,23 +223,19 @@ class RomaUnsbModel(BaseModel):
|
|||||||
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
|
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
|
||||||
|
|
||||||
parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))')
|
parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))')
|
||||||
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
|
|
||||||
parser.add_argument('--nce_includes_all_negatives_from_minibatch',
|
parser.add_argument('--nce_includes_all_negatives_from_minibatch',
|
||||||
type=util.str2bool, nargs='?', const=True, default=False,
|
type=util.str2bool, nargs='?', const=True, default=False,
|
||||||
help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.')
|
help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.')
|
||||||
|
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
|
||||||
|
|
||||||
parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map')
|
parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map')
|
||||||
parser.add_argument('--netF_nc', type=int, default=256)
|
|
||||||
parser.add_argument('--nce_T', type=float, default=0.07, help='temperature for NCE loss')
|
|
||||||
|
|
||||||
parser.add_argument('--lmda_1', type=float, default=0.1)
|
|
||||||
parser.add_argument('--num_patches', type=int, default=256, help='number of patches per layer')
|
|
||||||
parser.add_argument('--flip_equivariance',
|
parser.add_argument('--flip_equivariance',
|
||||||
type=util.str2bool, nargs='?', const=True, default=False,
|
type=util.str2bool, nargs='?', const=True, default=False,
|
||||||
help="Enforce flip-equivariance as additional regularization. It's used by FastCUT, but not CUT")
|
help="Enforce flip-equivariance as additional regularization. It's used by FastCUT, but not CUT")
|
||||||
|
|
||||||
parser.add_argument('--lambda_inc', type=float, default=1.0, help='incremental weight for content-aware optimization')
|
parser.add_argument('--lambda_inc', type=float, default=1.0, help='incremental weight for content-aware optimization')
|
||||||
parser.add_argument('--eta_ratio', type=float, default=0.1, help='ratio of content-rich regions')
|
parser.add_argument('--eta_ratio', type=float, default=0.4, help='ratio of content-rich regions')
|
||||||
|
|
||||||
parser.add_argument('--atten_layers', type=str, default='5', help='compute Cross-Similarity on which layers')
|
parser.add_argument('--atten_layers', type=str, default='5', help='compute Cross-Similarity on which layers')
|
||||||
|
|
||||||
@ -243,9 +258,8 @@ class RomaUnsbModel(BaseModel):
|
|||||||
BaseModel.__init__(self, opt)
|
BaseModel.__init__(self, opt)
|
||||||
|
|
||||||
# 指定需要打印的训练损失
|
# 指定需要打印的训练损失
|
||||||
self.loss_names = ['G_GAN_1', 'D_real_1', 'D_fake_1', 'G_1', 'NCE_1', 'SB_1',
|
self.loss_names = ['G_GAN', 'D_real_ViT', 'D_fake_ViT', 'G', 'SB']
|
||||||
'G_2']
|
self.visual_names = ['real_A0', 'real_A_noisy', 'fake_B0', 'real_B0']
|
||||||
self.visual_names = ['real_A', 'real_A_noisy', 'fake_B', 'real_B']
|
|
||||||
self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')]
|
self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')]
|
||||||
|
|
||||||
if self.opt.phase == 'test':
|
if self.opt.phase == 'test':
|
||||||
@ -261,12 +275,10 @@ class RomaUnsbModel(BaseModel):
|
|||||||
|
|
||||||
if self.isTrain:
|
if self.isTrain:
|
||||||
self.model_names = ['G', 'D_ViT', 'E']
|
self.model_names = ['G', 'D_ViT', 'E']
|
||||||
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.model_names = ['G']
|
self.model_names = ['G']
|
||||||
|
|
||||||
print(f'input_nc = {self.opt.input_nc}')
|
|
||||||
# 创建网络
|
# 创建网络
|
||||||
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
|
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
|
||||||
|
|
||||||
@ -284,9 +296,6 @@ class RomaUnsbModel(BaseModel):
|
|||||||
# 定义损失函数
|
# 定义损失函数
|
||||||
self.criterionL1 = torch.nn.L1Loss().to(self.device)
|
self.criterionL1 = torch.nn.L1Loss().to(self.device)
|
||||||
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
|
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
|
||||||
self.criterionNCE = []
|
|
||||||
for nce_layer in self.nce_layers:
|
|
||||||
self.criterionNCE.append(PatchNCELoss(opt).to(self.device))
|
|
||||||
self.criterionIdt = torch.nn.L1Loss().to(self.device)
|
self.criterionIdt = torch.nn.L1Loss().to(self.device)
|
||||||
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
||||||
self.optimizer_D = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
self.optimizer_D = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
||||||
@ -447,8 +456,8 @@ class RomaUnsbModel(BaseModel):
|
|||||||
|
|
||||||
# ============ 第三步:拼接输入并执行网络推理 =============
|
# ============ 第三步:拼接输入并执行网络推理 =============
|
||||||
bs = self.real_A0.size(0)
|
bs = self.real_A0.size(0)
|
||||||
z_in = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A0.device)
|
self.z_in = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A0.device)
|
||||||
z_in2 = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A1.device)
|
self.z_in2 = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A1.device)
|
||||||
# 将 real_A, real_B 拼接 (如 nce_idt=True),并同样处理 real_A_noisy 与 XtB
|
# 将 real_A, real_B 拼接 (如 nce_idt=True),并同样处理 real_A_noisy 与 XtB
|
||||||
self.real = self.real_A0
|
self.real = self.real_A0
|
||||||
self.realt = self.real_A_noisy
|
self.realt = self.real_A_noisy
|
||||||
@ -459,10 +468,8 @@ class RomaUnsbModel(BaseModel):
|
|||||||
self.real = torch.flip(self.real, [3])
|
self.real = torch.flip(self.real, [3])
|
||||||
self.realt = torch.flip(self.realt, [3])
|
self.realt = torch.flip(self.realt, [3])
|
||||||
|
|
||||||
print(f'fake_B0: {self.real_A0.shape}, fake_B1: {self.real_A1.shape}')
|
self.fake_B0 = self.netG(self.real_A0, self.time, self.z_in)
|
||||||
self.fake_B0 = self.netG(self.real_A0, self.time, z_in)
|
self.fake_B1 = self.netG(self.real_A1, self.time, self.z_in2)
|
||||||
self.fake_B1 = self.netG(self.real_A1, self.time, z_in2)
|
|
||||||
print(f'fake_B0: {self.fake_B0.shape}, fake_B1: {self.fake_B1.shape}')
|
|
||||||
|
|
||||||
if self.opt.phase == 'train':
|
if self.opt.phase == 'train':
|
||||||
real_A0 = self.real_A0
|
real_A0 = self.real_A0
|
||||||
@ -488,28 +495,6 @@ class RomaUnsbModel(BaseModel):
|
|||||||
# [[1,576,768],[1,576,768],[1,576,768]]
|
# [[1,576,768],[1,576,768],[1,576,768]]
|
||||||
# [3,576,768]
|
# [3,576,768]
|
||||||
|
|
||||||
## 生成图像的梯度
|
|
||||||
#fake_gradient = torch.autograd.grad(self.mutil_fake_B0_tokens.sum(), self.mutil_fake_B0_tokens, create_graph=True)[0]
|
|
||||||
#
|
|
||||||
## 梯度图
|
|
||||||
#self.weight_fake = self.cao.generate_weight_map(fake_gradient)
|
|
||||||
#
|
|
||||||
## 生成图像的CTN光流图
|
|
||||||
#self.f_content = self.ctn(self.weight_fake)
|
|
||||||
#
|
|
||||||
## 变换后的图片
|
|
||||||
#self.warped_real_A_noisy2 = warp(self.real_A_noisy, self.f_content)
|
|
||||||
#self.warped_fake_B0 = warp(self.fake_B0,self.f_content)
|
|
||||||
#
|
|
||||||
## 经过第二次生成器
|
|
||||||
#self.warped_fake_B0_2 = self.netG(self.warped_real_A_noisy2, self.time, z_in)
|
|
||||||
|
|
||||||
#warped_fake_B0_2=self.warped_fake_B0_2
|
|
||||||
#warped_fake_B0=self.warped_fake_B0
|
|
||||||
#self.warped_fake_B0_2_resize = self.resize(warped_fake_B0_2)
|
|
||||||
#self.warped_fake_B0_resize = self.resize(warped_fake_B0)
|
|
||||||
#self.mutil_warped_fake_B0_tokens = self.netPreViT(self.warped_fake_B0_resize, self.atten_layers, get_tokens=True)
|
|
||||||
#self.mutil_fake_B0_2_tokens = self.netPreViT(self.warped_fake_B0_2_resize, self.atten_layers, get_tokens=True)
|
|
||||||
|
|
||||||
|
|
||||||
def compute_D_loss(self): #判别器还是没有改
|
def compute_D_loss(self): #判别器还是没有改
|
||||||
@ -517,30 +502,23 @@ class RomaUnsbModel(BaseModel):
|
|||||||
|
|
||||||
lambda_D_ViT = self.opt.lambda_D_ViT
|
lambda_D_ViT = self.opt.lambda_D_ViT
|
||||||
fake_B0_tokens = self.mutil_fake_B0_tokens[0].detach()
|
fake_B0_tokens = self.mutil_fake_B0_tokens[0].detach()
|
||||||
fake_B1_tokens = self.mutil_fake_B1_tokens[0].detach()
|
|
||||||
|
|
||||||
real_B0_tokens = self.mutil_real_B0_tokens[0]
|
real_B0_tokens = self.mutil_real_B0_tokens[0]
|
||||||
real_B1_tokens = self.mutil_real_B1_tokens[0]
|
|
||||||
|
|
||||||
|
|
||||||
pre_fake0_ViT = self.netD_ViT(fake_B0_tokens)
|
pre_fake0_ViT = self.netD_ViT(fake_B0_tokens)
|
||||||
pre_fake1_ViT = self.netD_ViT(fake_B1_tokens)
|
self.loss_D_fake_ViT = self.criterionGAN(pre_fake0_ViT, False)
|
||||||
|
|
||||||
self.loss_D_fake_ViT = (self.criterionGAN(pre_fake0_ViT, False).mean() + self.criterionGAN(pre_fake1_ViT, False).mean()) * 0.5 * lambda_D_ViT
|
pred_real0_ViT = self.netD_ViT(real_B0_tokens)
|
||||||
|
self.loss_D_real_ViT = self.criterionGAN(pred_real0_ViT, True)
|
||||||
|
|
||||||
pred_real0_ViT = self.netD_ViT(real_B0_tokens)
|
self.losscao, self.weight_real, self.weight_fake = self.cao(pred_real0_ViT, pre_fake0_ViT, self.loss_D_real_ViT, self.loss_D_fake_ViT)
|
||||||
pred_real1_ViT = self.netD_ViT(real_B1_tokens)
|
|
||||||
self.loss_D_real_ViT = (self.criterionGAN(pred_real0_ViT, True).mean() + self.criterionGAN(pred_real1_ViT, True).mean()) * 0.5 * lambda_D_ViT
|
return self.losscao* lambda_D_ViT
|
||||||
|
|
||||||
self.loss_D_ViT = (self.loss_D_fake_ViT + self.loss_D_real_ViT) * 0.5
|
|
||||||
|
|
||||||
|
|
||||||
return self.loss_D_ViT
|
|
||||||
|
|
||||||
def compute_E_loss(self):
|
def compute_E_loss(self):
|
||||||
"""计算判别器 E 的损失"""
|
"""计算判别器 E 的损失"""
|
||||||
|
|
||||||
print(f'resl_A_noisy: {self.real_A_noisy.shape} \n fake_B0: {self.fake_B0.shape}')
|
|
||||||
XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0.detach()], dim=1)
|
XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0.detach()], dim=1)
|
||||||
XtXt_2 = torch.cat([self.real_A_noisy2, self.fake_B1.detach()], dim=1)
|
XtXt_2 = torch.cat([self.real_A_noisy2, self.fake_B1.detach()], dim=1)
|
||||||
temp = torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0).mean()
|
temp = torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0).mean()
|
||||||
@ -550,12 +528,28 @@ class RomaUnsbModel(BaseModel):
|
|||||||
|
|
||||||
def compute_G_loss(self):
|
def compute_G_loss(self):
|
||||||
"""计算生成器的 GAN 损失"""
|
"""计算生成器的 GAN 损失"""
|
||||||
|
if self.opt.lambda_ctn > 0.0:
|
||||||
|
# 生成图像的CTN光流图
|
||||||
|
self.f_content = self.ctn(self.weight_fake)
|
||||||
|
|
||||||
|
# 变换后的图片
|
||||||
|
self.warped_real_A_noisy2 = warp(self.real_A_noisy, self.f_content)
|
||||||
|
self.warped_fake_B0 = warp(self.fake_B0,self.f_content)
|
||||||
|
|
||||||
|
# 经过第二次生成器
|
||||||
|
self.warped_fake_B0_2 = self.netG(self.warped_real_A_noisy2, self.time, self.z_in)
|
||||||
|
|
||||||
|
warped_fake_B0_2=self.warped_fake_B0_2
|
||||||
|
warped_fake_B0=self.warped_fake_B0
|
||||||
|
# 计算L2损失
|
||||||
|
self.ctn_loss = F.mse_loss(warped_fake_B0_2, warped_fake_B0)
|
||||||
|
|
||||||
if self.opt.lambda_GAN > 0.0:
|
if self.opt.lambda_GAN > 0.0:
|
||||||
pred_fake = self.netD_ViT(self.mutil_fake_B0_tokens[0])
|
pred_fake = self.netD_ViT(self.mutil_fake_B0_tokens[0])
|
||||||
self.loss_G_GAN = self.criterionGAN(pred_fake, True).mean() * self.opt.lambda_GAN
|
self.loss_G_GAN = self.criterionGAN(pred_fake, True).mean()
|
||||||
else:
|
else:
|
||||||
self.loss_G_GAN = 0.0
|
self.loss_G_GAN = 0.0
|
||||||
|
|
||||||
self.loss_SB = 0
|
self.loss_SB = 0
|
||||||
if self.opt.lambda_SB > 0.0:
|
if self.opt.lambda_SB > 0.0:
|
||||||
XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0], dim=1)
|
XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0], dim=1)
|
||||||
@ -564,9 +558,9 @@ class RomaUnsbModel(BaseModel):
|
|||||||
bs = self.opt.batch_size
|
bs = self.opt.batch_size
|
||||||
|
|
||||||
# eq.9
|
# eq.9
|
||||||
ET_XY = self.netE(XtXt_1, self.time, XtXt_1).mean() - torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0)
|
ET_XY = self.netE(XtXt_1, self.time, XtXt_1).mean() - self.netE(XtXt_1, self.time, XtXt_2).mean()
|
||||||
self.loss_SB = -(self.opt.num_timesteps - self.time[0]) / self.opt.num_timesteps * self.opt.tau * ET_XY
|
self.loss_SB = -(self.opt.num_timesteps - self.time[0]) / self.opt.num_timesteps * self.opt.tau * ET_XY
|
||||||
self.loss_SB += self.opt.tau * torch.mean((self.real_A_noisy - self.fake_B0) ** 2)
|
self.loss_SB += torch.mean((self.real_A_noisy - self.fake_B0) ** 2)
|
||||||
|
|
||||||
if self.opt.lambda_global > 0.0:
|
if self.opt.lambda_global > 0.0:
|
||||||
loss_global = self.calculate_similarity(self.real_A0, self.fake_B0) + self.calculate_similarity(self.real_A1, self.fake_B1)
|
loss_global = self.calculate_similarity(self.real_A0, self.fake_B0) + self.calculate_similarity(self.real_A1, self.fake_B1)
|
||||||
@ -574,12 +568,10 @@ class RomaUnsbModel(BaseModel):
|
|||||||
else:
|
else:
|
||||||
loss_global = 0.0
|
loss_global = 0.0
|
||||||
|
|
||||||
self.l2_loss = 0.0
|
self.loss_G = self.opt.lambda_GAN * self.loss_G_GAN + \
|
||||||
#if self.opt.lambda_ctn > 0.0:
|
self.opt.lambda_SB * self.loss_SB + \
|
||||||
# wapped_fake_B = warp(self.fake_B, self.f_content) # use updated self.f_content
|
self.opt.lambda_ctn * self.ctn_loss + \
|
||||||
# self.l2_loss = F.mse_loss(self.fake_B_2, wapped_fake_B) # complete the loss calculation
|
loss_global * self.opt.lambda_global
|
||||||
|
|
||||||
self.loss_G = self.loss_G_GAN + self.opt.lambda_SB * self.loss_SB + self.opt.lambda_ctn * self.l2_loss + loss_global * self.opt.lambda_global
|
|
||||||
return self.loss_G
|
return self.loss_G
|
||||||
|
|
||||||
def calculate_attention_loss(self):
|
def calculate_attention_loss(self):
|
||||||
|
|||||||
@ -7,27 +7,22 @@
|
|||||||
|
|
||||||
python train.py \
|
python train.py \
|
||||||
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
|
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
|
||||||
--name ROMA_UNSB_001 \
|
--name ROMA_UNSB_003 \
|
||||||
--dataset_mode unaligned_double \
|
--dataset_mode unaligned_double \
|
||||||
--no_flip \
|
--no_flip \
|
||||||
--display_env ROMA \
|
--display_env ROMA \
|
||||||
--model roma_unsb \
|
--model roma_unsb \
|
||||||
--lambda_GAN 8.0 \
|
--lambda_GAN 1.0 \
|
||||||
--lambda_NCE 8.0 \
|
--lambda_NCE 8.0 \
|
||||||
--lambda_SB 0.1 \
|
--lambda_SB 1.0 \
|
||||||
--lambda_ctn 1.0 \
|
--lambda_ctn 1.0 \
|
||||||
--lambda_inc 1.0 \
|
--lambda_inc 1.0 \
|
||||||
--lr 0.00001 \
|
--lr 0.00001 \
|
||||||
--gpu_id 0 \
|
--gpu_id 0 \
|
||||||
--nce_idt False \
|
--nce_idt False \
|
||||||
--nce_layers 0,4,8,12,16 \
|
|
||||||
--netF mlp_sample \
|
--netF mlp_sample \
|
||||||
--netF_nc 256 \
|
--flip_equivariance True \
|
||||||
--nce_T 0.07 \
|
--eta_ratio 0.4 \
|
||||||
--lmda_1 0.1 \
|
|
||||||
--num_patches 256 \
|
|
||||||
--flip_equivariance False \
|
|
||||||
--eta_ratio 0.1 \
|
|
||||||
--tau 0.01 \
|
--tau 0.01 \
|
||||||
--num_timesteps 10 \
|
--num_timesteps 4 \
|
||||||
--input_nc 3
|
--input_nc 3
|
||||||
|
|||||||
1
train.py
1
train.py
@ -44,6 +44,7 @@ if __name__ == '__main__':
|
|||||||
model.setup(opt) # regular setup: load and print networks; create schedulers
|
model.setup(opt) # regular setup: load and print networks; create schedulers
|
||||||
model.parallelize()
|
model.parallelize()
|
||||||
model.set_input(data) # unpack data from dataset and apply preprocessing
|
model.set_input(data) # unpack data from dataset and apply preprocessing
|
||||||
|
#print('Call opt paras')
|
||||||
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
|
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
|
||||||
if len(opt.gpu_ids) > 0:
|
if len(opt.gpu_ids) > 0:
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user