roma_unsb/data/unaligned_double_dataset.py
2025-02-22 14:21:54 +08:00

101 lines
4.3 KiB
Python

import os.path
from data.base_dataset import BaseDataset, get_transform
from data.image_folder import make_dataset
from PIL import Image
import random
import util.util as util
import torchvision.transforms.functional as TF
import random
from torchvision.transforms import transforms as tfs
class UnalignedDoubleDataset(BaseDataset):
"""
This dataset class can load unaligned/unpaired datasets.
It requires two directories to host training images from domain A '/path/to/data/trainA'
and from domain B '/path/to/data/trainB' respectively.
You can train the model with the dataset flag '--dataroot /path/to/data'.
Similarly, you need to prepare two directories:
'/path/to/data/testA' and '/path/to/data/testB' during test time.
"""
def __init__(self, opt):
"""Initialize this dataset class.
Parameters:
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
# self.use_resize_crop = opt.use_resize_crop
BaseDataset.__init__(self, opt)
self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA'
self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB'
self.opt = opt
if opt.phase == "test" and not os.path.exists(self.dir_A) \
and os.path.exists(os.path.join(opt.dataroot, "valA")):
self.dir_A = os.path.join(opt.dataroot, "valA")
self.dir_B = os.path.join(opt.dataroot, "valB")
self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA'
self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB'
self.A_size = len(self.A_paths) # get the size of dataset A
self.B_size = len(self.B_paths) # get the size of dataset B
def __getitem__(self, index):
"""Return a data point and its metadata information.
Parameters:
index (int) -- a random integer for data indexing
Returns a dictionary that contains A, B, A_paths and B_paths
A (tensor) -- an image in the input domain
B (tensor) -- its corresponding image in the target domain
A_paths (str) -- image paths
B_paths (str) -- image paths
"""
A_path = self.A_paths[index % self.A_size] # make sure index is within then range
if self.opt.serial_batches: # make sure index is within then range
index_B = index % self.B_size
else: # randomize the index for domain B to avoid fixed pairs.
index_B = random.randint(0, self.B_size - 1)
B_path = self.B_paths[index_B]
A_img = Image.open(A_path).convert('RGB')
A0 = A_img.crop((0,0,256,256))
A1 = A_img.crop((256,0,512,256))
B_img = Image.open(B_path).convert('RGB')
B0 = B_img.crop((0,0,256,256))
B1 = B_img.crop((256,0,512,256))
# Apply image transformation
# For FastCUT mode, if in finetuning phase (learning rate is decaying),
# do not perform resize-crop data augmentation of CycleGAN.
# print('current_epoch', self.current_epoch)
is_finetuning = self.opt.isTrain and self.current_epoch > self.opt.n_epochs
modified_opt = util.copyconf(self.opt, load_size=self.opt.crop_size if is_finetuning else self.opt.load_size)
resize = tfs.Resize(size=(self.opt.load_size, self.opt.load_size))
imgA = resize(A0)
param = dict()
i, j, h, w = tfs.RandomCrop.get_params(
imgA, output_size=(self.opt.crop_size, self.opt.crop_size))
param['crop_pos'] = (i, j)
transform = get_transform(modified_opt, param)
# print(transform)
# sys.exit(0)
# A = transform(A_img)
# B = transform(B_img)
A0 = transform(A0)
B0 = transform(B0)
A1 = transform(A1)
B1 = transform(B1)
return {'A0': A0, 'A1': A1, 'B0': B0, 'B1': B1, 'A_paths': A_path, 'B_paths': B_path}
def __len__(self):
"""Return the total number of images in the dataset.
As we have two datasets with potentially different number of images,
we take a maximum of
"""
return max(self.A_size, self.B_size)